Gas & Electric Coordination: The Need for Information Sharing

Kelli Joseph, Ph.D.
Gas & Electric Analyst
New York Independent System Operator

2013 MIT Energy Initiative Symposium
April 16, 2013
What drives the need for information sharing?

1. Differences in market timing between the gas and electric sectors
 - *Electric*: Bidding and price/quantity uncertainty
 - *Gas*: Nomination and quantity uncertainty

2. The market structure of the gas system
 - *Long-term natural gas transportation contracts for local gas distribution companies (LDCs) play an important role in pipeline financing.*

3. The physical reality of the way gas moves through the pipeline system
 - *Pressure balancing drives pipeline system flexibility*
Natural Gas & Power Generation

- Low natural gas prices have led to an increase in natural gas-fired generation
- Gas-fired generation matched coal-fired generation for the first time last year
- The electric sector now represents the largest natural gas consuming sector
New York State Gas Demand

- Average NYS gas demand: 3.3 Bcf/day
- Average Electric Demand: 1.4 Bcf/day
- Electric sector gas use up 30% since 2008

Source: EIA Natural Gas Consumption by End Use
Statewide Fuel Mix

Natural Gas & Dual Fuel (Gas & Oil) total 53% of statewide capacity

Downstate Fuel Mix

New York City

- Gas: 23%
- Oil: 5%
- Gas & Oil: 72%

Long Island

- Gas: 16%
- Oil: 21%
- Gas & Oil: 60%
- Renewables: 3%

Proposed Additions

Natural gas projects account for nearly 70% of all proposed new capacity.
Differences in Market Timing

- **Gas Day**: 10 a.m. – 10 a.m. (ET)
- **Electric Day**: 12:00 a.m. – 12:00 a.m.
- **NYISO**
 - *Day-Ahead bids*: 5 a.m.
 - *Day-Ahead scheduled posted*: 11 a.m.
- Bid without knowing the *price* of gas
- *Nominate* gas prior to receiving a firm operating commitment
Differences in Market Timing

8-9 a.m.
Purchase and Nominate Gas for Electric Day 2

12 a.m.
Electric Day 1

5 a.m.
Submit Bids for Electric Day 2

11 a.m.
NYISO DA Schedule Posted for Electric Day 2

10 a.m. (ET)

Typical Summer Load

Typical Winter Load

Gas Day 1

Gas Day 2
Market Structure of Gas System

- The gas pipeline system – as it exists today – was not designed to serve a mostly gas-fired electric system
- Local gas distribution companies (LDCs) buy long-term firm transportation contracts
- Additional pipeline capacity?
 - *Pipelines cannot charge existing customer base*
 - *Must demonstrate in the public interest: Typically through long-term FT contracts*
Market Structure of Gas System

نك
Generators in competitive wholesale markets have little incentive to purchase long-term primary firm transportation contracts

- Fixed monthly charge to reserve pipeline capacity
- Bid incremental variable costs
Physical Gas Flow

- Line pack, compressor stations, gas injections, gas storage
- Flexibility in balancing agreements
 - Overtake
 - Undertake
- Flexibility on timing of gas taken
 - Non-ratable takes
Physical Gas Flow

- Restrictions on flexibility:
 - System Alert
 - Ratable Takes
 - Operational Flow Order (OFO)
- “Over-nominations” managed by priority
Potential Reliability Concerns

- Day-Ahead assumptions versus Real-Time System Conditions
 - *More or less load than expected*
 - *Transmission line outage*
 - *Generator Trip*

- Requires system operator actions to ensure contingencies do not impact system reliability
Potential Reliability Concerns

- Timing differences make it difficult for generators to nominate with certainty
 - *Day-ahead schedules posted after schedule gas.*
 - *Nominations are not easily made on peak usage days, holidays, overnight, early morning.*

- Depending on:
 - *How much gas a generator nominated*
 - *How much gas a generator already burned*
 - *Pipeline system conditions at the time*

- In addition to creating headaches for pipeline system operators – a generator may or may not be able to respond to real-time dispatch signal – potentially putting electric system reliability at risk
Different types of Gas Generators

- Directly connected
- Behind the city-gate
 - *For example: NYC and Long Island*
 - *New York Facilities System (Con Ed and National Grid)*
- Even with primary firm on the interstate, generators behind the city-gate run the risk of being interrupted when the LDC pipeline system is stressed
What kind of information is needed?

- Day Ahead and Real-Time electric scheduling assume fuel availability
 - Changes in real-time system conditions may require generators to be dispatched outside of the day-ahead schedule
- Actions taken by system operators to maintain reliability are an attempt to prevent an emergency situation
- Communication/Coordination between pipelines, LDCs, gas-fired generators, and system operators
Information Needed/ Possible Procedures

- Two types of system conditions that would require coordination:
 - *Day-to-Day dispatch changes*
 - *Emergency – as defined by either system*

- The type of communication required could differ

- Who is actually doing the communicating could differ
Information Needed/ Possible Procedures

- **FERC Order 698**
 - Allows pipelines to request hourly burn profiles from directly-connected generators
 - Allows ISO/RTOs to request information regarding service levels for gas transportation and for gas supply
Information Needed/Possible Procedures

- **Day-to-Day:**
 - Generators already manage their fuel requirements: Including nomination restrictions, pipeline maintenance/outage impacts
 - Generators already notify the NYISO of any limitations (derates)

- LDCs could also request hourly burn profiles
- Generators could modify their profiles throughout the day
- Notification could include detail on how Generators and Pipelines/LDCs can manage the imbalance, if it can be managed
During specific system conditions (e.g. Anticipated Extreme Cold Weather, etc.) it could be helpful for the NYISO to know next-hour fuel capability of generators:

- How much gas nominated
- How much gas already burned
- How much alternate fuel available
- Alternate fuel on-site and time to re-fuel
Information Needed/ Possible Procedures

- Emergency – as defined by either system
- Specific procedures already in place
 - *If a generator is identified as being critical to maintaining reliability, communicate with pipelines/LDCs to determine if capacity to transport gas*
 - *Even in this case – however – gas may not be available*
- Pipelines have responsibility to serve primary firm transportation holders
- LDCs have requirement to serve their “human needs” customers
 - *Generators often do not fall into either category.*
Implications of Information Sharing

- What if a generator has overtaken gas from the pipeline, but is certain they can work around any imbalances?
 - At what point do pipeline operators notify system operators that a generator’s actions cannot be accommodated?
Implications of Information Sharing

- What if a generator is assuring the ISO/RTO they will have gas, yet the pipeline or LDC is anticipating that they cannot handle the current imbalance, and has notified the system operator?
 - Perhaps the generator is working with a marketer to schedule gas, but has not yet placed the nomination, so the pipeline or LDC is unaware that the expected imbalance may not occur.

- What happens when the anticipated reliability concern does not occur, but generator profits were impacted because of ISO/RTO or pipeline actions?
The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state’s bulk electricity grid, administering New York’s competitive wholesale electricity markets, conducting comprehensive long-term planning for the state’s electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com
APPENDIX
New York State Gas Demand 2012

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>29%</td>
<td>61%</td>
</tr>
<tr>
<td>Residential/Commercial/Industrial</td>
<td>71%</td>
<td>39%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total (Bcf)</th>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>6.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Residential/Commercial/Industrial</td>
<td>17.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>
NAESB WGQ Nomination and Scheduling Standards and Procedures (EST)

- **Day-Ahead**
 - *Timely Nomination Cycle:* 12:30 p.m.
 - *Evening Nomination Cycle:* 7:00 p.m.

- **Gas Day**
 - *Intraday 1 (ID1) Cycle:* 11:00 a.m.
 - *Intraday 2 (ID2) Cycle:* 6:00 p.m.
NAESB WGQ Nomination and Scheduling Standards and Procedures

- Scheduling Priorities:
 - Primary Firm
 - Secondary Firm
 - Interruptible
 - Other
 - Authorized Overrun
 - Imbalance